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 6 

Abstract 7 

Probiotics prove useful in correcting and preventing numerous health conditions, including those 8 

having severe impact on society, e.g. obesity and cancer. Notably, these capabilities of probiotics 9 

appear to be associated with their antioxidant properties. The mechanisms of antioxidant action of 10 

probiotics range from immediate biochemical scavenging of reactive substances to induction of 11 

signaling events leading to increased capacity of the host’s cytoprotective systems. Since the 12 

antioxidant effects of probiotics significantly vary in types and details, a broad selection of methods 13 

of assessment of these properties is required in order to identify, characterize and develop novel 14 

probiotics for medical purposes, as well as to explain the mechanisms of action of probiotics 15 

already in use in healthcare. This review revises the versatile toolbox, which can be used to assess 16 

the antioxidant properties of probiotics.  17 

 18 
Keywords: antioxidant assays; probiotics; preventive healthcare; biochemical scavenging; 19 

signaling20 
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 21 

Introduction 22 

There are numerous reports on the ability of probiotic bacteria to correct negative effects of 23 

various non-infectious pathologies such as allergies, toxicoses of different etiology, obesity, etc.; in 24 

addition, some probiotics appear to be capable of preventing cancer [1-7]. The broad spectrum of 25 

health-promoting activity of probiotics can be attributed to their metabolic products protecting 26 

eukaryotic host’s cells from negative influence of various factors, including oxidative stress [6].  27 

Besides displaying a plethora of health promoting functions which are often strain specific 28 

[8, 9], some probiotic bacteria demonstrate strong antioxidative potentials [10]. Specifically, 29 

Lactobacillus fermentum strains were shown to have resistance to several reasactive oxygen species 30 

(ROS) such as hydrogen peroxide, superoxide and hydroxyl radicals [11]. In addition, some 31 

metabolites, such as exopolysaccharides, synthesized and excreted by probiotic bacteria, were 32 

shown to have antioxidant activity [12]. Extracts of Bifidobacterium animalis 01 were found to 33 

scavenge ROS  in vitro and in vivo [13]. Also, oxidative stress associated with type 2 diabetes was 34 

shown to be decreased by multispecies probiotic preparations, and Lactobacillus rhamnosus 35 

demonstrated strong antioxidant activity in situations of elevated physical stress in humans [14]. 36 

One of the widely investigated topics in dietary-based biomedicine is probiotics for 37 

amelioration of oxidative stress-related diseases by direct sequestration of reactive oxygen species 38 

and augmentation of antioxidant defense systems operating in the human body [15-17]. The 39 

production of free radicals at high levels in the gut can exert cytotoxic effects on the membrane 40 

phospholipids of the intestinal epithelial cells, resulting in the formation of toxic products such as 41 

malondialdehyde (MDA). Similarly, the occurrence of severe peroxidative changes in the gut due to 42 

lipids and free radicals reaction resulting in enhanced lipid peroxidation has been found to be 43 

commonly associated with the onset of numerous diseases.  44 

Thus, probiotics are an important factor affecting oxidative status of the gut by exhibiting 45 

direct antioxidant properties and by inducing the intrinsic human signaling antioxidant defense [15, 46 

18].  47 
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Studying the mechanisms underlying health-promoting functions of probiotic bacteria will 48 

enhance our knowledge of symbiotic microbe-host interactions [19-23]. As a result, we expect to 49 

find new approaches in using nature-derived biologically active substances in gastro-intestinal 50 

health care, immunomodulation, prophylaxis of cancer, stress (UV and radiation)-protection, and 51 

growth/regeneration promotion.  52 

An important part of a "tool kit" for these studies is the methods to assess the antioxidative 53 

properties of probiotics. This paper provides an overview of such methods. 54 

These methods can be divided into two distinct groups: those assessing the effects on the 55 

oxidative status systems signaling, and those testing the biochemical antioxidant properties of 56 

probiotics.  57 

 58 

Oxidative status and inflammation systems signaling-based techniques 59 

As far as humans and animals have evolved genetic programs through intervention of 60 

antioxidative enzymes for protection against oxidative stresses, the level of expression of some 61 

eukaryotic genes could be used to indirectly assess the antioxidant capacity of probiotics 62 

administered to the objects. Therefore, nuclear factor erythroid 2-related factor 2 (NFE2L2, also 63 

known as NRF2) has been recognized as one of the key transcriptional factors that can play a 64 

significant protective role by controlling the antioxidant response element-dependent gene 65 

regulation in response to oxidative stress [15].  66 

Generally, the basic interactomic approach [24] is used in this type of studies: probiotics are 67 

analyzed with respect to their ability to induce a set of genes (or protein products) regulated by a 68 

single transcription factor or being a part of a signaling pathway - e.g. NFE2L2, AP-1, NF-κB, etc. 69 

For example, Chauhan et al. tested antioxidant properties of L. fermentum Lf1 through assessing the 70 

NFE2L2/AP-1 and PPARGC1A pathways activation in the HT-29 cells [15]. Endo and colleagues 71 

tested the effects of MIYAIRI 588 probiotic on rats using similar approach; however, they only 72 

assessed NFE2L2/AP-1 targets (NQO1, HMPOX1, TXN) on the protein level [25]. Gao and co-73 
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authors used the NFE2L2 protein expression assessment-based variation of the method, together 74 

with numerous biochemical tests, to study the signaling antioxidant activity of the Lactobacillus 75 

plantarum FC225 strain [26]. The effects of probiotic Lactobacillus reuteri ATCC PTA 6475 on 76 

proinflammatory cytokines regulated by the AP-1 component JUN were revealed by Lin and 77 

colleagues [27]. 78 

The same approach is sometimes employed using pro-oxidant/pro-inflammatory signaling 79 

systems as the reporters. For example, the effects of the combined Lactobacillus delbruekii and 80 

Lactobacillus fermentum probiotic on the NF-κB signaling pathway at the protein level were 81 

studied by Hegazy and El-Bedewy [28]. A similar investigation focused at probiotic Lactobacillus 82 

rhamnosus GR-1 was performed by Karlsson and colleagues [29]. Being involved in cytokine 83 

signaling, NF-κB is often in the focus of the studies dedicated to testing of probiotics effects on the 84 

human gut-microbiota interactions [30].  85 

A study involving a combined analysis of activation of NF-κB and AP-1 was undertaken by 86 

Wehkamp and co-authors; these investigators tested the signaling effects of Escherichia coli Nissle 87 

1917 probiotic on the human intestinal epithelial cells [31, 32]. Schlee and colleagues investigated 88 

several oxidative status related and non-related pathways to assess the signaling effects of several 89 

probiotics and of a probiotic cocktail [33]. 90 

 91 

Biochemical approaches to probiotics antioxidant properties testing 92 

There are several group of methods, and several variances within these methods, which are 93 

routinely used for the antioxidant properties of probiotics. These methods range from those 94 

analyzing total pro- or antioxidant capacities of the reporter system, to those quantifying separate 95 

indices of oxidative status of the reporter system. Several methods rely on detection of changes in 96 

free radical production modulated by probiotics introduced into the radical-generating systems.  97 

Reviewing of the biochemical methods starts with the total prooxidant/antioxidant assays. 98 

Please note, brief ready-to-use protocols are given in the papers cited.  99 
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 100 

Total prooxidant/antioxidant assays 101 

Several generalized indices of oxidative status of biological systems are used to date. These 102 

are, for example, oxygen radical antioxidant capacity (ORAC), total oxidant capacity (TOC), also 103 

known as total oxidant status (TOS); total antioxidant capacity (TAC), also known as total 104 

antioxidant status (TAS), total antioxidant response (TAR), antioxidant potential (AOP), or non-105 

enzymatic antioxidant capacity (NEAC) [34-37]. 106 

Antioxidant activity can be monitored by a variety of methods based on different 107 

mechanisms such as hydrogen atom transfer (HAT), single electron transfer (SET), reducing power, 108 

etc. 109 

Oxygen radical antioxidant capacity (ORAC) is the most used HAT method. Other HAT-110 

based methods share the same principle, with the examples being total radical trapping antioxidant 111 

parameter (TRAP) and crocin bleaching assays. In these methods, peroxyl radicals produced by a 112 

generating system react with a probe resulting in the loss of fluorescence or absorbance that is 113 

registered as decay curves. Commonly used peroxyl radical generators are a group of azo-114 

compounds, e.g. 2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH) (hydrophilic) and 2,2′-115 

azobis(2,4-dimethylnaleronitrile (AMVN) (hydrophobic). A model antioxidant, Trolox (a vitamin E 116 

analog) is usually used as reference, and ORAC values of the tested antioxidants/probiotics are 117 

reported as Trolox equivalents [36]. A commonly used reporter fluorescent probe is fluorescein 118 

(Figure 1) [38]. The ORAC method was used to test the antioxidant properties of the Lactobacillus 119 

fermentum LF31 [38]. 120 

SET-methods typically use Trolox as standard antioxidant. Among SET-based methods, the 121 

Trolox equivalent antioxidant capacity (TEAC) assay is one of the most frequently used to date. 122 

The assay measures the ability of antioxidants to scavenge the stable radical cation 2,2′-azinobis(3-123 

ethylbenzothiazoline-6-sulphonic acid) (ABTS), a chromophore with maximum absorption at 124 

734 nm (Figure 2). Its absorbance at this wavelength decreases in the presence of antioxidants [36]. 125 
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Another example of TEAC chromophores is 2,2-Diphenyl-1-picrylhydrazyl with maximum 126 

absorption at 520 nm (Figure 3) [36, 39]. In a large-scale study by Amaretti and colleagues, TEAC 127 

assay was used to test several probiotics, including 7 Bifidobacterium, 11 Lactobacillus, 6 128 

Lactococcus, and 10 Streptococcus thermophilus strains [40]. 129 

The reducing power of antioxidants can be measured through their redox reactions with 130 

transition metal ions - iron (ferric reducing antioxidant potential, FRAP) and copper (Cupric 131 

reducing antioxidant capacity, CUPRAC). The TAS and TOS/TOC methods by Erel et al. [41] 132 

employ oxido-reduction of iron ions [36].  133 

The TOS/TOC assay is based on the oxidation of ferrous ion to ferric ion in the presence of 134 

oxidants in acidic medium [36]. The resulting complex ferric ion-xylenol orange is colored [36], 135 

and can be measured at 560 nm [42].  136 

The TAS method is based on the generation of hydroxyl radical via Fenton reaction, and the 137 

rate of the reaction is monitored via the analysis of absorbance of coloured dianisidyl radicals 138 

(absorbance is registered at ~440 nm) [41]. The mixture of ortho-dianisidine, ferrous ammonium 139 

sulfate and hydrogen peroxide solution produces oxidized o-dianisidine molecules into dianisidyl 140 

radicals, leading to a bright yellow-brown colour development (Figure 4). Antioxidants suppress the 141 

color formation (36). The TAS method has been used to study several probiotics, including Protexin 142 

[43]. 143 

The TOS/TOC assay is calibrated with hydrogen peroxide and results are expressed in terms 144 

of hydrogen peroxide micromolar equivalents per litre (μmol H2O2 Eq/L), whereas the TAS assay 145 

is calibrated with a stable antioxidant standard solution, which is traditionally the Trolox, and 146 

results are expressed as mmol Trolox Eq/L [36]. Total oxidant status assay is relatively rarely used 147 

for studying the probiotics properties. An example of such a study is the one performed by Anwar 148 

and colleagues on the Protexin probiotic [43]. 149 

Unfortunately, total oxidative/antioxidant indices reflect too complex events, and thus they 150 

are not readily reproducible. Different TOC/TAC assays sometimes do not correlate with each 151 
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other, and even considering the same method or methods with similar mechanisms, the results are 152 

often conflicting [36].  153 

Thus, more specific methods are often used together or apart from the total 154 

prooxidant/antioxidant assays. These methods are subdivided into two categories: those assessing 155 

dynamics of isolated redox processes, and those analyzing end-point products of such processes. 156 

One of the most frequently used assays of the first category is the lipid peroxidation detection.  157 

 158 

Lipid peroxidation detection using TBA 159 

Several variations of the basic principle of the assay [44] are used today. An acidified (with 160 

1% phosphoric acid) homogenate is treated with TBA (0.6%), and the mixture is then heated on a 161 

boiling water bath for 45 min. At this stage, the reaction occurs. 2-thiobarbituric acid reacts with 162 

MDA or other chemically similar molecules (TBA-reactive substances) at 25°C. One molecule of 163 

MDA or other chemically related substance reacts with 2 molecules of 2-thiobarbituric acid via a 164 

Knoevenagel-type condensation to yield chromophores with absorbance maximum at 532 nm. 165 

These chromophores require extraction, thus subsequently, an equal volume of n-butanol is added 166 

to the sample, and the solution is thoroughly mixed to allow for extraction of the products of the 167 

reaction. The butanol phase is then separated by centrifugation, and absorbance is measured at 520 168 

and 535 nm [15]. For preparation of the standard curve, overnight digestion of various 169 

concentrations of 1,1,3,3-tetraethoxypropane (0.1 mM) in presence of 0.2 N HCl can be used [15]. 170 

The method was used, for example, to study the antioxidant properties of Lactobacillus brevis CD2, 171 

L. salivarius FV2, and L. plantarum FV9 [45]. 172 

 173 

End-point products of redox processes 174 

Over the years, MDA and TBARS were the most often analysed markers of oxidative stress. 175 

In line with these markers, oxidized LDLs, antibodies to oxidized LDLs, 4-hydroxynonenal (4-176 

HNE), acrolein, advanced lipid oxidation products, advanced protein oxidation products, advanced 177 
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glycation end-products, disulfides, carbonyls, 3-nitrotyrosine, reactive aldehydes, reduced sugars, 8-178 

oxy-2-deoxyguanosine were also used [25, 36, 44, 46]. These factors are easily detected using 179 

respective specific techniques, from ELISA to HPLC with UV detection (HPLC-UV), ultra-180 

performance liquid chromatography with tandem mass spectrometry (HPLC/UPLC-MS/MS), and 181 

gas chromatography–mass spectrometry (GC-MS) [46]. These markers are also supplemented with 182 

more accurate ones, such as isoprostanes and their metabolites, and allantoin [46]. 183 

 184 

Isoprostanes 185 

Isoprostanes are prostaglandin (PG) isomers that are generated from polyunsaturated fatty 186 

acids, mainly from arachidonic acid (and additionally from docosahexaenoic and eicosapentaenoic 187 

acids) by a non-enzymatic process that involves in situ peroxidation of membrane phospholipids by 188 

free radicals and reactive oxygen species [46]. Isoprostanes are reliable markers of oxidative 189 

damage in vivo and in vitro [46]. Isoprostanes are suitable oxidative stress markers: they are stable 190 

specific products of ROS-induced lipid peroxidation, and they have been found in detectable 191 

quantities as a free form in all biological fluids and as esterified form in normal tissues and they are 192 

unaffected by lipid content in diet. Current methods for determination of isoprostanes are ELISA, 193 

LC-MS and GC-MS [46]. Isoprostanes served as a marker of oxidative status in human subjects that 194 

were assigned with a diet containing the Lactobacillus fermentum ME-3 probiotic [47].  195 

 196 

Allantoin 197 

In humans, allantoin is the end product of non-enzymatic oxidation of uric acid. Allantoin is 198 

a promising biomarker of systemic oxidative status in humans because concentration of allantoin 199 

does not depend on variations of uric acid level, it is stable regardless of the storage or sample 200 

preparation, and additionally it is easily detected in biological material of human samples [46]. 201 

Allantoin is an extremely polar compound, therefore quantitative determination in plasma, serum or 202 

urine is difficult. It requires the use of sensitive and specific analytical techniques: capillary zone 203 
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electrophoresis (CZE), enzymatic assay and enzyme cycling method, capillary electrophoresis with 204 

UV detection (CE-UV), HPLC-UV, HPLC/UPLC-MS/MS, and GC-MS [46]. Allantoin was among 205 

compounds tested in infant rhesus monkeys fed with diet containing the Bifidobacterium animalis 206 

subsp. lactis HN019 probiotic [48]. 207 

 208 

Radical-generating systems used for the antioxidant assays 209 

Several radical-generating systems are routinely used in antioxidants and probiotics testing. 210 

Pyrogallol autoxidation 211 

The method utilizes the iron ions or luminol-enhanced autoxidation of pyrogallol 212 

accompanied by release of superoxide anion [26, 49]. In this method, the test compound or a 213 

probiotic affect the rate of release of chromophoric products of the reaction (detection at 320 nm or 214 

420 nm) [26, 49]. This method was used, for example, in a study by Gao and co-authors where the 215 

antioxidant activity of the Lactobacillus plantarum FC225 strain was elucidated [26]. 216 

 217 

DPPH radical-generating/reporting system 218 

The DPPH (1,1-diphenyl-2-picrylhydrazyl) solution is a stable radical-generating system 219 

[50]. Usually, the 0.1 mM DPPH solution in methanol [26] or ethanol [50] is mixed with the test 220 

compound or a probiotic. The decrease in absorbance at 517 nm is measured at 0 and 5 min and 221 

then every 15 min until the reaction reaches its plateau. The percentage of DPPH remaining at the 222 

steady-state is calculated as a function of the molar ratio of antioxidant to DPPH [26]. Lactobacillus 223 

plantarum FC225 strain antioxidant effect was studied using this method [26]. 224 

 225 

1,10-phenanthroline/ferrous sulfate radical-generating system 226 

In this assay, the hydroxyl radical scavenging activity of the test compound is analyzed 227 

using the mixture of 1,10-phenanthroline (0.75 mM), FeSO4 (0.75 mM) and  H2O2 (0.01%) 228 
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producing a colored product registered at 536 nm [26]. This method was used to study 229 

Lactobacillus plantarum FC225 strain’s antioxidant properties [26].  230 

 231 

Anti-lipid peroxidation activity test - the Egg yolk/ferrous sulfate system 232 

According to this approach, anti-lipid peroxidation activity is determined following a simple 233 

procedure. Equal volumes of PBS and fresh egg yolk are mixed and stirred for 10 min, and then the 234 

mix is diluted 1:25 with PBS. One mL of the resulting solution, 0.5 mL of the sample, 1 mL PBS 235 

and 1 mL FeSO4 (0.01 mM) are mixed, the mixture is shaken at 37ºC for 15 min, and then 1 mL of 236 

2.5% trichloroacetic acid is added. The solution is thoroughly mixed, centrifuged at 4000 g for 20 237 

min, then 3 mL of the supernatant is mixed with 2 mL 0.8% 2-thiobarbituric acid and heated to 238 

100ºC for 10 min. The absorbance of the mixture is measured at 532 nm [26].  239 

Although effects of probiotics are often analyzed with respect to chemical content of egg 240 

yolk [51, 52], the method is rarely used to test for anti-lipid peroxidation activity.  241 

 242 

Superoxide anion detection methods 243 

Numerous substances react with superoxide and allow for its detection via calorimetric or 244 

fluorescent methods [25]. The most frequently used ones are: redox-sensitive fluorescent dye 245 

dihydroethidium (compatible with tissues samples) [25]; ferricytochrome C (when reduced, it can 246 

be measured spectrophotometrically at 550 nm) [53]; nitroblue tetrazolium (the reaction product 247 

absorbance is measured at 550 nm) [54, 55]; 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) 248 

(upon reacting with superoxide anion, it produces a product with absorbance measured at 470 nm; 249 

the same product is also fluorescent, with ex./em. maxima of 470/550 nm) [55]; 2,3-bis(2-methoxy-250 

4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium hydroxide (XTT) (the reaction 251 

product absorbance is measured at 470 nm) [55]. 252 

These and other fluorescent/chromophor probes can and are readily used for biochemical 253 

assessment of antioxidant properties of probiotics in cell-free and cellular assays [56-58]. 254 
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 255 

Biosensors in assessment of antioxidative and related properties of probiotics  256 

In vivo studies on animal objects are usually rather laborious and time-consuming. Тo 257 

identify potential protectors among probiotics, much simpler model systems are required [59].  258 

The considerable universality of the antioxidant defense mechanisms, a consequence of 259 

evolutionary antiquity of its mechanisms, allows using simple unicellular system, including 260 

prokaryotes, as model objects to test antioxidant properties of bioactive factors. An approach 261 

implying using of biosensors is an example of such solution [60]. 262 

A biosensor is defined as an analytical device, which integrates a biological recognition 263 

element with a physical transducer to generate a measurable signal proportional to the concentration 264 

of the analyzed compound [61]. 265 

The biosensor approach is not too common; however, there were some attempts to utilize it 266 

in probiotics studies. A typical approach for using cellular biosensors was proposed by Grimoud 267 

and colleagues [62]. Briefly, for the screening of potential protective (anti-inflammatory and anti-268 

proliferative) properties, the authors used a two-stage screening system based on a modified 269 

eukaryotic cell line. The first step of screening was based on the HT-29 cells with modified 270 

expression pattern. The pattern of inflammation was characterized by analyzing the secreted 271 

interleukins. Secreted substances were quantified using classical chemiluminescent ELISA test. 272 

Then, further testing was carried out using the inflammatory cell culture model consisting of 273 

inflammatory-activated transgenic Caco-2 cells transfected with a reporter gene under the control of 274 

the NF-κB inducible promoter. This method is attributed to biosensor type because the detecting 275 

system consists of the biological part (cells) and the technical component (a luminometer).  In this 276 

study, the following microorganisms were screened: Bifidobacterium bifidum, B. breve, B. longum, 277 

B. pseudocatenulatum, Lactobacillus acidophilus, L. buchneri, L. farciminis, L. helveticus, L. 278 

plantarum, L. rhamnosus, L. lactis, Pediococcus acidilactici, and Streptococcus thermophilus. As a 279 

result, anti-inflammatory properties of 11 strains were tested. It was also found that B. breve and 280 
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Lactococcus lactis, in a composition of symbiotic preparations, significantly decreased proliferation 281 

of cancer cells. 282 

It is worth considering the approach of in vitro screening of probiotic properties proposed in 283 

[38]. The antioxidant performance of Lactobacillus fermentum LF31 with prebiotic supplement was 284 

shown in human colon cultured cells using oxygen radical absorbance capacity (ORAC) method 285 

and the potency of the strain was compared with that of the positive control, trolox. Authors 286 

observed a statistically significant free radical-scavenging capacity of L. fermentum LF31.  287 

Speaking of single-cell systems, it should be noted that bacteria grow faster and are easier to 288 

operate with when compared to eukaryotic cell culture. Signal system based on luminescence is a 289 

tool of choice in bacterial biosensor studies, since luminescent signal is one of the most easily 290 

detected. If methods under review are to be applied in large-scale pharmacological research, the 291 

speed of screening will be a crucial factor. 292 

In one of our own studies [63] bacterial biosensors based on E. coli MG 1655 (pSoxS-lux), 293 

E. coli MG1655 (pRecA-lux), and E.coli MG1655 pColD-lux were used as a single-cell model 294 

systems. These biosensors are the genetically modified strains of E. coli, containing the plasmid 295 

carrying luxCDABE operon from Photorhabdus luminescens under the control of appropriate 296 

promoters, SoxS, RecA, etc. This operon is responsible for bioluminescence and provides luciferase 297 

used in this test as a reporter [64].  298 

A biosensor strain with the PsoxS promoter detects the presence of oxidants forming a cell 299 

superoxide anion radical in the medium. A characteristic feature of oxidative stress in E. coli is the 300 

induction of genes of the antioxidant system and increasing the activity of antioxidant enzymes 301 

encoded by these genes [65]. Therefore, in the genetic constructs that constitute the basis of 302 

biosensors responsive to oxidative stress, the promoters of these genes were used. The PsoxS 303 

promoter specifically reacts to the superoxide anion radicals. Biosensors with pRecA and pColD 304 

plasmids report on the presence of factors that cause DNA damage in the cell. The sensitivity of 305 

these biosensors is about 10-8 M of the inductor [64]. To activate SoxS promoter, paraquat (1,1'-306 
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dimethyl-4,4'-bipyridylium dichloride) was used. This compound triggers oxidative stress, 307 

switching the cell bioenergetics to generation of superoxide anion, instead of ATP synthesis [66, 308 

67]. 309 

In addition, an activity of Bacillus amyloliquefaciens B-1895 (soil isolate) and Bacillus 310 

subtilis KATMIRA1933 (isolated from the fermented dairy product YoguFarm™) was studied. 311 

Probiotic properties of B. amyloliquefaciens В-1895 manifest in stimulation of growth and tolerance 312 

to pathogens of fish and birds [68, 69]. The subtilosin preparation obtained from B. subtilis 313 

KATMIRA1933 was confirmed as being safe for human tissues, having spermicidal activity [70], 314 

and active against foodborne [71] and vaginal [72, 73] pathogens. Preparations of both fermentates 315 

demonstrated anti-oxidant activity [68-73].  316 

In another work [74], a similar approach for use of biosensors was proposed with some 317 

modifications: genetically engineered constructs were made in Bifidobacterium longum. Authors 318 

constructed a bifidobacteria-based biosensor that could be used to analyze the metabolic state of the 319 

cells. In this case, the probiotic strain itself was a biosensor. An insect (Pyrophorus 320 

plagiophthalamus) luciferase gene was introduced into the genome of the bacteria to construct a 321 

bifidobacterial luminescent biosensor that could be used for a quick screening. Light emission is the 322 

signal of the metabolic state changes of cells. Experiments with luminescent B. longum indicate 323 

that, under acidic stress condition, bifidogenic prebiotics such as FOS or lactulose can considerably 324 

improve the cell physiology.  325 

Applying this approach makes it possible to study the metabolic activity of the probiotic 326 

preparation under different conditions, which allows choosing the optimum combination of 327 

additional compounds in synbiotic preparations, for example, in order to help bifidobacteria to 328 

survive gastric transit, or to increase its beneficial properties. This approach seems promising and, 329 

with minor modification (e.g., introduction of stress-inducible promoters to the construct) can be 330 

applied to problems discussed above. 331 
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In general, we can conclude that there is some trend in applying biosensors in probiotic 332 

screening. Most of authors use microplate tests, with luminescent of fluorescent signal as detection 333 

tool. 334 

 335 

A brief summary of methods used to assess the antioxidative properties of probiotics 336 

Table 1 summarizes the brief results of the studies that employed the reviewed methods of 337 

assessment of the oxidative status-modulating properties of probiotics.  338 

 339 

A comparative analysis of methods under description 340 

As seen from current review, the methods utilized for measuring of antioxidant activity of 341 

probiotics can be subdivided into biochemical and signaling-based techniques.  342 

The most straightforward methods employ chemical systems for generation of reactive 343 

oxygen species, and one can even choose a system producing specific radicals. In these methods, 344 

reporting substances are external just as the radical-generating systems, and no eukaryotic cells are 345 

required to run the test.  346 

The second group of methods relies on external or cellular eukaryotic sources of reactive 347 

oxygen species, while detected are cell-derived substances only. Remarkably, there are sub-groups 348 

of such techniques, and these reflect an important biological fact: reactive oxygen species are 349 

produced all over the eukaryotic cell, in all of its compartments. Although ROS are generally 350 

universal, the consequences of their generation are dramatically different: most impact may fall on 351 

lipids, proteins, small molecules, DNA and RNA. Consequently, this initial impact affects the 352 

secondary events. To list a few examples, lipid oxidation may lead to chain reactions of lipid 353 

peroxidation; oxidation of calcium channels of endoplasmic reticulum leads to cytoplasmic calcium 354 

flux further leading to endoplasmic reticulum stress; oxidation of cytoplasmic signaling proteins 355 

leads to induction of redox-activated transcription factors controlling ROS-generating enzymes. 356 

Thus, different analytical methods are required and employed to study specific roles of probiotics in 357 
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development of the primary and secondary events and their consequences. In addition, just as it is 358 

true for the first group of methods, specific methods of the second group are used to test particular 359 

properties in a given probiotic. The rationale is standard for biomedicine: therapeutical intervention 360 

should be as targeted as possible. This is especially true for modulation of redox process, because 361 

there are many sources of ROS inside the cell, and these ROS have numerous physiological 362 

functions that are spatiotemporally specific. 363 

The third groups of methods resembles the second one, with one essential difference: the 364 

detection is based on cellular signals deriving from cellular sensing of and reactions towards redox 365 

processes. As redox regulation is vast and diverse, specific signaling systems and levels of these 366 

systems (pre-mRNAs, mRNA, proteins and their modifications) to be analyzed are chosen based on 367 

research needs. For example, pre-mRNAs, mRNAs and signaling proteins modifications are used to 368 

address changes in cellular signaling pattern, while proteins quantities and enzymatic activities are 369 

analyzed to assess the cellular response.  370 

The fourth group of methods is somewhat similar to the third group in being based on 371 

assessment of cellular reactions towards ROS, rather than on assessment of direct chemical 372 

consequences of generation of ROS, but it is distinct, as it utilizes prokaryotic and eukaryotic 373 

biosensors.  374 

In summary, antioxidant activity testing methods used in probiotics research are extremely 375 

versatile. They range from cell-free radical generation testing (for assessing the direct inherent 376 

antioxidant activity) and to RNA/protein expression analysis in eukaryotic cells co-culture and 377 

animal models. Firstly, this vast variety allows one to choose the most appropriate method for 378 

assessing a specific property of the probiotic strain being under consideration or development. 379 

Secondly, in probiotics development, these methods are conveniently combined into a panel of tests 380 

of increasing complexity thus making positive and negative selection of strains both fast and cheap. 381 

Moreover, each type (or step in the multi-step approach) of testing methods is represented by 382 

generally interchangeable techniques varying in details, such as radical generation system used, 383 
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mode of detection, positive control or reference substance, pathway targets analyzed, etc. 384 

Consequently, these groups of tests are flexible enough to meet the needs and capabilities of every 385 

given lab. At the same time, utilization of several techniques within the same group of methods 386 

allows to account non-intended interactions of the agent (probiotic) being tested and the assay 387 

system components. Thus, the above-mentioned wide variety of methods, which can be used to 388 

assess antioxidant properties of probiotics, lays a solid basis for reliable data interpretation.  389 

Moreover, probiotics, as a group of antioxidants, are inherently much more “customizable” 390 

than any other group of antioxidants, and their potential redox roles are far more complex and wide-391 

ranged that these of the latter. On the other hand, it is evident that cellular antioxidants such as 392 

probiotics, have much more complex effects when used as treatment, when compared to molecular 393 

antioxidants. Thus, much more complex testing is required for probiotics than for molecular 394 

antioxidants. As a consequence, the antioxidant properties testing ‘toolbox’ used in probiotics 395 

research should be more diverse than that used in molecular antioxidants research, and concomitant 396 

use of tests from different groups is required to comprehensively characterize the intrinsic 397 

complexity of effects of probiotics in modulation of redox processes and oxidative status of the host 398 

cells.  399 
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 613 

Table 1. A brief summary of assays used to study the oxidative status-modulating capabilities of 614 

probiotics. 615 

Assay or biosensor 

type 
Analyzed 

parameters 
Probiotics studied Brief results References 

Nitroblue tetrazolium 

superoxide probe 

assay 

Superoxide anion 

scavenging detection 

in a cell-free system 

B. coagulans RK-02 The probiotic had 

significant 

antioxidant and free 

radical scavenging 

activities 

58 

DPPH radical-

generating system 
Superoxide anion 

scavenging detection 

in a cell-free system 

Enterococcus 

faecium (BDU7) 
The probiotic had 

significant 

superoxide radical 

scavenging activities 

75 

Nitroblue tetrazolium 

superoxide probe 

assay 

Superoxide anion 

production by the 

head kidney 

leucocytes of 

rainbow trout 

Lactococcus lactis 

ssp. lactis CLFP 100, 

Leuconostoc 

mesenteroides CLFP 

196, and 

Lactobacillus sakei 

CLFP 202 

A significant increase 

in the superoxide 

anion production was 

observed in the 

groups fed with 

CLFP 100 and CLFP 

196 

76 

The NFE2L2/AP-1 

pathway activation 

assay - RNA level 

RNA expression of 

the NFE2L2/AP-1 

and PPARGC1A 

target genes in the 

HT29 cells 

Lactobacillus 

fermentum Lf1 
A significant increase 

in the expression of 

genes of antioxidant 

enzymes was found 

15 

The NFE2L2/AP-1 

pathway activation 

assay - protein level 

Nfe2l2 and its targets 

protein expression 

assessed in livers of 

rats treated with the 

probiotic 

Clostridium 

butyricum MIYAIRI 

588 

The probiotic-treated 

rats  showed 

remarkable induction 

of liver NFE2L2 and 

its target enzymes 

25 

The NFE2L2/AP-1 

pathway activation 

assay - protein level 

Murine liver Nfe2l2 

protein expression 

after the probiotic-

containing diet 

Lactobacillus 

plantarum FC225 
C225 markedly 

elevated the gene 

expression of Nfe2l2 

26 

The NFE2L2/AP-1 

pathway activation 

assay - RNA level 

TNF RNA expression 

in human LPS-

activated monocytes 

and primary 

monocyte-derived 

macrophages treated 

with the probiotic 

Lactobacillus reuteri 

ATCC PTA 6475 
The probiotic 

suppressed TNF 

transcription by 

inhibiting activation 

of MAP kinase-

regulated c-Jun and 

the transcription 

factor, AP-1. 

27 
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Assay or biosensor 

type 
Analyzed 

parameters 
Probiotics studied Brief results References 

The NF-κB pathway 

activation assay 
NF-κB and IL6 

protein expression, 

and TNF RNA 

expression in colonic 

tissue of patients with 

chronic diarrhea 

Lactobacillus 

delbruekii/ 

Lactobacillus 

fermentum 

The use of probiotic 

for 8 weeks 

significantly 

ameliorated the 

inflammation by 

decreasing the 

colonic concentration 

of IL-6, expression of 

TNF-α and NF-κB 

p65  

28 

The NF-κB pathway 

activation assay 
NF-jB activity in E. 

coli-stimulated T24 

bladder cells  

Lactobacillus 

rhamnosus GR-1 
Viable  GR-1 cells 

were found to 

potentiate NF-jB 

activity, while heat-

killed lactobacilli 

demonstrated a 

marginal increase in 

NF-jB activity.  

29 

The NF-κB pathway 

activation assay - 

luciferase gene 

reporter analysis 

approach 

NF-κB and AP-1 

binding to the target 

DNA in probiotic-

treated Caco-2 cells  

Escherichia coli 

Nissle 1917 
E. coli Nissle 1917  

induced the luciferase 

gene expression via 

NF-κB and AP-1 

binding 

31 

Total antioxidant 

status and total 

oxidant status assays 

Total antioxidant 

activity and total 

oxidant capacity of 

the blood samples of 

the White Leghorn 

birds  

Protexin The overall total 

antioxidant capacity 

was increased, 

whereas total oxidant 

status was reduced 

43 

Oxygen radical 

absorbance capacity 

assay 

Oxygen radical 

absorbance capacity 

of the probiotic plus 

prebiotic-treated HT-

29 cells 

Lactobacillus 

fermentum LF31 
The 

probiotic/prebiotic 

mix confers 

remarkable 

antioxidant capacity 

38 

The trolox-equivalent 

antioxidant capacity 

assay 

Trolox-equivalent 

antioxidant capacity  

of the probiotics 

7 Bifidobacterium, 11 

Lactobacillus, six 

Lactococcus, and 10 

Streptococcus 

thermophilus strains 

Strains 

Bifidobacterium 

animalis subsp. lactis 

DSMZ 23032, 

Lactobacillus 

acidophilus DSMZ 

23033, and 

Lactobacillus brevis 

DSMZ 23034 

exhibited the highest 

TAA(AA), 

TAA(LA), TEAC, 

and TGSH values 

within the lactobacilli 

and bifidobacteria. 

40 
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Assay or biosensor 

type 
Analyzed 

parameters 
Probiotics studied Brief results References 

The lipid 

peroxidation 

detection assay with 

TBA 

Lipid peroxidation in 

the human sperm 

samples  

Combined probiotic: 

Lactobacillus brevis 

CD2, Lactobacillus 

salivarius FV2, and 

Lactobacillus 

plantarum FV9 

The combined 

probiotic prevented 

sperm lipid 

peroxidation that was 

induced in vitro by a 

ferrous ion promoter, 

thus preserving 

sperm motility and 

viability.  

45 

Individual indices of 

oxidative status 
Peroxidized 

lipoproteins, oxidized 

LDLs, 8-

isoprostanes, 

glutathione redox 

ratio in humans 

consuming non-

fermented and 

fermented goats’ 

milk 

Lactobacillus 

fermentum ME-3 
Consumption of 

fermented goats' milk 

prolonged resistance 

of the lipoprotein 

fraction to oxidation, 

lowered levels of 

peroxidized 

lipoproteins, oxidized 

LDL, 8-isoprostanes 

and glutathione redox 

ratio, and enhanced 

total antioxidative 

activity.  

47 

Individual indices of 

oxidative status 
Serum allantoin in 

infant rhesus 

monkeys fed with 

probiotic-containing 

diet 

Bifidobacterium 

animalis subsp. lactis 

HN019 

Probiotic diet caused 

increased allantoin  
48 

Bifidobacterium 

longum biosensor 
Bioluminescence 

(insect luciferase) 
Bifidobacterium 

longum with 

additional 

compounds 

It was shown that  

bifidogenic prebiotics 

can sensitively 

improve  the activity 

of synbiotic 

compounds 

74 

Escherichia coli 

biosensor 
Bioluminescence 

(bacterial luciferase) 
Bacillus 

amyloliquefaciens B-

1895, 

Bacillus subtilis 

KATMIRA1933 

A screening of 

antioxidant and 

DNA-protective 

activity of a number 

of probiotics was 

performed. Strains 

exhibiting protective 

activity have been 

found. 

63 

HT-29 biosensor; 

Caco-2 biosensor 
Secreted  

inflammation 

biomarkers (IL-8, 

NF-κB) detected in 

ELISA test 

(chemiluminescent 

signal) 

Bifidobacterium 

breve, Lactococcus 

lactis  , 

prebiotic 

glucooligosaccharide 

and synbiotic 

preparations  

An anti-inflammatory 

effect and anti-

proliferative activity 

were shown for 

symbiotic 

preparations 

62 

Human colon 

cultured cells 
Fluorescence Lactobacillus 

fermentum LF31 
Free radical-

scavenging activity 

of Lactobacillus 

fermentum LF31 

confirmed 

38 
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 618 

Figure legends 619 

Figure 1. Structural formula of fluorescein - a common fluorescent probe used in the ORAC 620 

methods. 621 

Figure 2. Structural formula of ABTS - a common chromophor used in the SET methods. 622 

Figure 3. Structural formula of 2,2-Diphenyl-1-picrylhydrazyl - a common chromophor used in the 623 

SET methods. 624 

Figure 4. Structural formula of ortho-dianisidine, a common chromophor-producing substance used 625 

in the SET methods. 626 

627 
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Fig. 1 631 
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Fig. 2 633 
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Fig. 3 635 

 636 

Fig. 4 637 
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